Thursday, 21 September 2017

Moving Media Processo Autocovarianza


2 1 modello a media mobile modelli della serie MA models. Time noti come modelli ARIMA possono includere termini autoregressivi e o in movimento termini medi In settimana 1, abbiamo imparato un termine autoregressivo in un modello di serie per la xt variabile è un valore ritardato di xt Per esempio , un ritardo 1 termine autoregressivo è x T-1, moltiplicato per un coefficiente Questa lezione definisce lo spostamento terms. A media mobile media termine in un modello di serie storica è un errore di passato moltiplicato per un coefficient. Let wt overset N 0, sigma 2w, il che significa che il WT sono identicamente, indipendentemente distribuite, ciascuna con una distribuzione normale con media 0 e lo stesso variance. The 1 ° ordine modello a media mobile, indicato con MA 1 è. xt mu WT theta1w. The fine 2 ° modello a media mobile, indicato con MA 2 è. mu XT WT theta1w theta2w. The q ° ordine modello a media mobile, indicato con MA q è. mu XT WT theta1w theta2w punti thetaqw. Note Molti libri di testo e dei programmi software definiscono il modello con segni negativi prima dei termini Questo doesn t cambiare le proprietà teoriche generali del modello, anche se lo fa capovolgere i segni algebrici di valori dei coefficienti stimati ei termini unsquared in formule per ACFS e varianze È necessario controllare il software per verificare se vi siano segni negativi o positivi sono stati utilizzati al fine di scrivere correttamente il modello stimato R utilizza segnali positivi nel suo modello di base, come facciamo here. Theoretical proprietà di una serie storica con un MA 1 Model. Note che l'unico valore diverso da zero nella ACF teorico è di lag 1 Tutti gli altri autocorrelazioni sono 0 Quindi un ACF campione con un autocorrelazione significativo solo in caso di ritardo 1 è un indicatore di un possibile MA 1 studenti model. For interessati, prove di queste proprietà sono in appendice a questo handout. Example 1 Supponiamo che un modello MA 1 è xt 10 in peso di 7 w Così il coefficiente 1 0 7 l'ACF teorico è dato t-1 in cui WT overset N 0,1 by. A trama di questa trama ACF follows. The appena mostrato è l'ACF teorico per un Master 1 con 1 0 7 In pratica, un campione ha vinto t di solito forniscono un modello così chiara utilizzando R, abbiamo simulato n 100 valori di esempio utilizzando il modello XT 10 WT 7 w t-1 dove w t. iid N 0,1 per questa simulazione, un appezzamento serie storica dei dati campione segue possiamo t dire molto da questo plot. The campione ACF per i dati simulati segue vediamo un picco al ritardo 1 seguito da valori generalmente non significativi per i ritardi del passato 1 Nota che il campione ACF non corrisponde al modello teorico del MA sottostante 1, vale a dire che tutte le autocorrelazioni per i ritardi del passato 1 sarà 0 un campione diverso avrebbe un po 'diverso ACF campione mostrato di seguito, ma sarebbe probabilmente hanno le stesse proprietà ampio features. Theroretical di una serie storica con un mA 2 Model. For il modello mA 2, proprietà teoriche sono il following. Note che gli unici valori diversi da zero nel ACF teorica sono per ritardi 1 e 2 autocorrelazioni per ritardi maggiori sono 0 Quindi, un ACF campione con autocorrelazioni significativi a ritardi 1 e 2, ma autocorrelazioni non significativi ritardi più elevato indica una possibile mA 2 model. iid N 0,1 I coefficienti sono 1 0 5 e 2 0 3 Poiché si tratta di un Master 2, la ACF teorica avrà valori diversi da zero solo in GAL 1 e 2.Values ​​dei due autocorrelazioni non nulle are. A trama del ACF teorica follows. As quasi sempre è il caso, i dati di esempio ha vinto t comportarsi in modo del tutto così perfettamente come la teoria abbiamo simulato n 150 valori di esempio per il modello XT 10 in peso di 5 w t-1 3 w t-2 dove w t. iid n 0,1 la trama serie storica dei dati segue come con la serie storica Prodotti per i dati di esempio MA 1, è possibile t dire molto da it. The ACF campione per i dati simulati segue il modello è tipico per le situazioni in cui un modello MA 2 può essere utile ci sono due picchi statisticamente significative a ritardi 1 e 2 seguiti da valori non significativi per altri GAL si noti che a causa di errore di campionamento, l'ACF campione non corrisponde al modello teorico exactly. ACF per general MA q Models. A proprietà di modelli q MA, in generale, è che ci sono autocorrelazioni diversi da zero per la prima GAL Q e autocorrelazioni 0 per tutti i GAL q. Non-unicità di collegamento tra i valori di 1 e rho1 in MA 1 Model. In il modello MA 1, per ogni valore di 1 reciproco 1 1 dà lo stesso valore for. As un esempio , usare 0 5 per 1 e quindi utilizzare 1 0 5 2 per 1 si otterrà rho1 0 4 sia instances. To soddisfare una restrizione teorica chiamato invertibilità abbiamo limitare MA 1 modelli di avere valori con valore assoluto inferiore a 1 nell'esempio appena data, 1 0 5 sarà un valore di parametro ammissibile, mentre 1 1 0 5 2 sarà not. Invertibility del modello mA models. An mA si dice che sia invertibile se è algebricamente equivalente a un modello AR ordine infinito convergenti da convergenti, abbiamo significa che i coefficienti AR diminuiscono a 0, mentre ci muoviamo nel time. Invertibility è una restrizione programmato nel software di serie storiche utilizzate per stimare i coefficienti di modelli con termini MA non s qualcosa che controlliamo per l'analisi dei dati Ulteriori informazioni sul restrizione invertibilità per modelli MA 1 è riportata nella appendix. Advanced teoria Note per un modello MA q con un determinato ACF, c'è solo un modello invertibile la condizione necessaria per invertibilità è che i coefficienti hanno valori tali che l'equazione 1- 1 y - - qyq 0 ha soluzioni per y che non rientrano l'unità di codice circle. R per il Examples. In Esempio 1, abbiamo tracciato l'ACF teorica del modello xt 10 WT 7W t-1 e poi simulato n 150 valori da questo modello e tracciato le serie storiche del campione e l'ACF campione per i dati simulati i comandi R utilizzati per tracciare la ACF teorica were. acfma1 ARMAacf ma c 0 7, 10 ritardi di ACF per mA 1 con theta1 0 7 GAL 0 10 crea una variabile denominata ritardi che spazia 0-10 trama in ritardo, acfma1, XLIM c 1,10, ylab R, tipo h, principale ACF per MA 1 con theta1 0 7 abline h 0 aggiunge un asse orizzontale per il primo comando plot. The determina l'ACF e memorizza in un oggetto denominato acfma1 la nostra scelta di trama name. The il comando 3 ° trame comando ritardi rispetto ai valori ACF per i ritardi da 1 a 10 il parametro ylab etichette l'asse Y e il parametro principale mette un titolo sul plot. To vedere i valori numerici della ACF è sufficiente utilizzare la simulazione acfma1.The di comando e le trame sono state fatte con i seguenti comandi. lista ma c 0 7 Simula n 150 valori da MA 1 x xc 10 aggiunge 10 per rendere medi di default 10 di simulazione per significare 0 plot x, tipo b, principale simulato MA 1 dati ACF x, XLIM c 1,10, principale ACF per simulata campione data. In Esempio 2, abbiamo tracciato l'ACF teorica del modello XT 10 in peso di 5 w t-1 3 w t-2 e poi simulato n 150 valori da questo modello e tracciato le serie temporali del campione e l'ACF campione per la simulata Il dati R comandi utilizzati were. acfma2 ARMAacf ma c 0 5,0 3, acfma2 ritardo 0 10 trama in ritardo, acfma2, XLIM c 1,10, ylab R, tipo h, principale ACF per mA 2 con theta1 0 5, theta2 0 3 abline h 0 lista ma c 0 5, 0 3 x xc 10 plot x, tipo b, principale simulato mA 2 Serie ACF x, XLIM c 1,10, principale ACF per simulata mA 2 Data. Appendix prova di proprietà di mA 1.Per gli studenti interessati, ecco le prove per le proprietà teoriche del MA 1 model. Variance testo testo xt mu peso theta1 w 0 testo testo peso theta1w sigma 2W theta 21 sigma 2W 1 theta 21 sigma 2w. When h 1, l'espressione precedente 1 w 2 per ogni h 2, l'espressione precedente 0 la ragione è che, per definizione di indipendenza del peso E wkwj 0 per eventuali ulteriori kj, perché il peso hanno media 0, E wjwj E WJ 2 w 2. per una serie temporale. Applicare questo risultato a ottenere il ACF dato above. An modello MA invertibile è uno che può essere scritta come un modello AR ordine infinito che converge in modo che i coefficienti AR convergono a 0, mentre ci muoviamo infinitamente indietro nel tempo noi ll dimostriamo invertibilità per la MA 1 model. We allora sostituto rapporto 2 per w t-1 nell'equazione 1. 3 zt peso theta1 z - theta1w peso theta1z - theta 2w. At tempo t-2 equazione 2 becomes. We poi rapporto sostituto 4 per w t-2 nell'equazione 3. ZT peso theta1 z - theta 21W peso theta1z - theta 21 Z - theta1w peso theta1z - theta1 2z theta 31w. If dovessimo continuare all'infinito, otterremmo il modello di ordine AR infinita. zt WT theta1 z - theta 21z theta 31Z - theta 41z dots. Note tuttavia, che se 1 1, i coefficienti moltiplicando i ritardi di z aumenterà infinitamente in termini di dimensioni, come ci muoviamo indietro nel tempo per evitare questo, abbiamo bisogno di 1 1 Questa è la condizione per un MA invertibile 1 model. Infinite Order MA model. In settimana 3, ci vedrai che un modello AR 1 può essere convertito in un modello di ordine MA infinita. XT - mu peso phi1w phi phi 21W punti k1 w puntini riassumere phi j1w. This somma dei precedenti termini di rumore bianco è noto come la rappresentazione causale di un AR 1 In altre parole, XT è un tipo speciale di MA con un numero infinito di termini andando indietro nel tempo questo è chiamato un ordine MA infinito o MA un ordine finito MA è un AR ordine infinito ed ogni AR ordine finito è un ordine infinito MA. Recall in settimana 1, abbiamo notato che un requisito per un AR fisso 1 è che 1 1 Sia s calcolare il xt Var utilizzando i representation. This causali ultimo passo utilizza un fatto di base sulla serie geometrica che richiede phi1 1 altrimenti la serie diverges.2 1 modello a media mobile modelli della serie MA models. Time noti come modelli ARIMA possono includere autoregressivo i termini e le o in movimento termini medi in settimana 1, abbiamo imparato un termine autoregressivo in un modello di serie per la xt variabile è un valore ritardato di xt per esempio, un ritardo di 1 termine autoregressivo è x T-1, moltiplicato per un coefficiente Questa lezione definisce movimento terms. A media mobile media termine in un modello di serie storica è un errore passato moltiplicato per un coefficient. Let WT overset N 0, sigma 2W, il che significa che il peso sono identicamente, distribuita in modo indipendente, ciascuno con una distribuzione normale con media 0 e lo stesso variance. The 1 ° ordine modello a media mobile, indicato con MA 1 è. xt mu WT theta1w. The fine 2 ° modello a media mobile, indicato con MA 2 è. mu XT WT theta1w theta2w. The q ° ordine modello a media mobile, indicato con MA q è. mu XT WT theta1w theta2w punti thetaqw. Note Molti libri di testo e dei programmi software definiscono il modello con segni negativi prima dei termini Questo doesn t cambiare le proprietà teoriche generali del modello, anche se lo fa capovolgere i segni algebrici di valori dei coefficienti stimati ei termini unsquared in formule per ACFS e varianze È necessario controllare il software per verificare se vi siano segni negativi o positivi sono stati utilizzati al fine di scrivere correttamente il modello stimato R utilizza segnali positivi nel suo modello di base, come facciamo here. Theoretical proprietà di una serie storica con un MA 1 Model. Note che l'unico valore diverso da zero nella ACF teorico è di lag 1 Tutti gli altri autocorrelazioni sono 0 Quindi un ACF campione con un autocorrelazione significativo solo in caso di ritardo 1 è un indicatore di un possibile MA 1 studenti model. For interessati, prove di queste proprietà sono in appendice a questo handout. Example 1 Supponiamo che un modello MA 1 è xt 10 in peso di 7 w Così il coefficiente 1 0 7 l'ACF teorico è dato t-1 in cui WT overset N 0,1 by. A trama di questa trama ACF follows. The appena mostrato è l'ACF teorico per un Master 1 con 1 0 7 In pratica, un campione ha vinto t di solito forniscono un modello così chiara utilizzando R, abbiamo simulato n 100 valori di esempio utilizzando il modello XT 10 WT 7 w t-1 dove w t. iid N 0,1 per questa simulazione, un appezzamento serie storica dei dati campione segue possiamo t dire molto da questo plot. The campione ACF per i dati simulati segue vediamo un picco al ritardo 1 seguito da valori generalmente non significativi per i ritardi del passato 1 Nota che il campione ACF non corrisponde al modello teorico del MA sottostante 1, vale a dire che tutte le autocorrelazioni per i ritardi del passato 1 sarà 0 un campione diverso avrebbe un po 'diverso ACF campione mostrato di seguito, ma sarebbe probabilmente hanno le stesse proprietà ampio features. Theroretical di una serie storica con un mA 2 Model. For il modello mA 2, proprietà teoriche sono il following. Note che gli unici valori diversi da zero nel ACF teorica sono per ritardi 1 e 2 autocorrelazioni per ritardi maggiori sono 0 Quindi, un ACF campione con autocorrelazioni significativi a ritardi 1 e 2, ma autocorrelazioni non significativi ritardi più elevato indica una possibile mA 2 model. iid N 0,1 I coefficienti sono 1 0 5 e 2 0 3 Poiché si tratta di un Master 2, la ACF teorica avrà valori diversi da zero solo in GAL 1 e 2.Values ​​dei due autocorrelazioni non nulle are. A trama del ACF teorica follows. As quasi sempre è il caso, i dati di esempio ha vinto t comportarsi in modo del tutto così perfettamente come la teoria abbiamo simulato n 150 valori di esempio per il modello XT 10 in peso di 5 w t-1 3 w t-2 dove w t. iid n 0,1 la trama serie storica dei dati segue come con la serie storica Prodotti per i dati di esempio MA 1, è possibile t dire molto da it. The ACF campione per i dati simulati segue il modello è tipico per le situazioni in cui un modello MA 2 può essere utile ci sono due picchi statisticamente significative a ritardi 1 e 2 seguiti da valori non significativi per altri GAL si noti che a causa di errore di campionamento, l'ACF campione non corrisponde al modello teorico exactly. ACF per general MA q Models. A proprietà di modelli q MA, in generale, è che ci sono autocorrelazioni diversi da zero per la prima GAL Q e autocorrelazioni 0 per tutti i GAL q. Non-unicità di collegamento tra i valori di 1 e rho1 in MA 1 Model. In il modello MA 1, per ogni valore di 1 reciproco 1 1 dà lo stesso valore for. As un esempio , usare 0 5 per 1 e quindi utilizzare 1 0 5 2 per 1 si otterrà rho1 0 4 sia instances. To soddisfare una restrizione teorica chiamato invertibilità abbiamo limitare MA 1 modelli di avere valori con valore assoluto inferiore a 1 nell'esempio appena data, 1 0 5 sarà un valore di parametro ammissibile, mentre 1 1 0 5 2 sarà not. Invertibility del modello mA models. An mA si dice che sia invertibile se è algebricamente equivalente a un modello AR ordine infinito convergenti da convergenti, abbiamo significa che i coefficienti AR diminuiscono a 0, mentre ci muoviamo nel time. Invertibility è una restrizione programmato nel software di serie storiche utilizzate per stimare i coefficienti di modelli con termini MA non s qualcosa che controlliamo per l'analisi dei dati Ulteriori informazioni sul restrizione invertibilità per modelli MA 1 è riportata nella appendix. Advanced teoria Note per un modello MA q con un determinato ACF, c'è solo un modello invertibile la condizione necessaria per invertibilità è che i coefficienti hanno valori tali che l'equazione 1- 1 y - - qyq 0 ha soluzioni per y che non rientrano l'unità di codice circle. R per il Examples. In Esempio 1, abbiamo tracciato l'ACF teorica del modello xt 10 WT 7W t-1 e poi simulato n 150 valori da questo modello e tracciato le serie storiche del campione e l'ACF campione per i dati simulati i comandi R utilizzati per tracciare la ACF teorica were. acfma1 ARMAacf ma c 0 7, 10 ritardi di ACF per mA 1 con theta1 0 7 GAL 0 10 crea una variabile denominata ritardi che spazia 0-10 trama in ritardo, acfma1, XLIM c 1,10, ylab R, tipo h, principale ACF per MA 1 con theta1 0 7 abline h 0 aggiunge un asse orizzontale per il primo comando plot. The determina l'ACF e memorizza in un oggetto denominato acfma1 la nostra scelta di trama name. The il comando 3 ° trame comando ritardi rispetto ai valori ACF per i ritardi da 1 a 10 il parametro ylab etichette l'asse Y e il parametro principale mette un titolo sul plot. To vedere i valori numerici della ACF è sufficiente utilizzare la simulazione acfma1.The di comando e le trame sono state fatte con i seguenti comandi. lista ma c 0 7 Simula n 150 valori da MA 1 x xc 10 aggiunge 10 per rendere medi di default 10 di simulazione per significare 0 plot x, tipo b, principale simulato MA 1 dati ACF x, XLIM c 1,10, principale ACF per simulata campione data. In Esempio 2, abbiamo tracciato l'ACF teorica del modello XT 10 in peso di 5 w t-1 3 w t-2 e poi simulato n 150 valori da questo modello e tracciato le serie temporali del campione e l'ACF campione per la simulata Il dati R comandi utilizzati were. acfma2 ARMAacf ma c 0 5,0 3, acfma2 ritardo 0 10 trama in ritardo, acfma2, XLIM c 1,10, ylab R, tipo h, principale ACF per mA 2 con theta1 0 5, theta2 0 3 abline h 0 lista ma c 0 5, 0 3 x xc 10 plot x, tipo b, principale simulato mA 2 Serie ACF x, XLIM c 1,10, principale ACF per simulata mA 2 Data. Appendix prova di proprietà di mA 1.Per gli studenti interessati, ecco le prove per le proprietà teoriche del MA 1 model. Variance testo testo xt mu peso theta1 w 0 testo testo peso theta1w sigma 2W theta 21 sigma 2W 1 theta 21 sigma 2w. When h 1, l'espressione precedente 1 w 2 per ogni h 2, l'espressione precedente 0 la ragione è che, per definizione di indipendenza del peso E wkwj 0 per eventuali ulteriori kj, perché il peso hanno media 0, E wjwj E WJ 2 w 2. per una serie temporale. Applicare questo risultato a ottenere il ACF dato above. An modello MA invertibile è uno che può essere scritta come un modello AR ordine infinito che converge in modo che i coefficienti AR convergono a 0, mentre ci muoviamo infinitamente indietro nel tempo noi ll dimostriamo invertibilità per la MA 1 model. We allora sostituto rapporto 2 per w t-1 nell'equazione 1. 3 zt peso theta1 z - theta1w peso theta1z - theta 2w. At tempo t-2 equazione 2 becomes. We poi rapporto sostituto 4 per w t-2 nell'equazione 3. ZT peso theta1 z - theta 21W peso theta1z - theta 21 Z - theta1w peso theta1z - theta1 2z theta 31w. If dovessimo continuare all'infinito, otterremmo il modello di ordine AR infinita. zt WT theta1 z - theta 21z theta 31Z - theta 41z dots. Note tuttavia, che se 1 1, i coefficienti moltiplicando i ritardi di z aumenterà infinitamente in termini di dimensioni, come ci muoviamo indietro nel tempo per evitare questo, abbiamo bisogno di 1 1 Questa è la condizione per un MA invertibile 1 model. Infinite Order MA model. In settimana 3, ci vedrai che un modello AR 1 può essere convertito in un modello di ordine MA infinita. XT - mu peso phi1w phi phi 21W punti k1 w puntini riassumere phi j1w. This somma dei precedenti termini di rumore bianco è noto come la rappresentazione causale di un AR 1 In altre parole, XT è un tipo speciale di MA con un numero infinito di termini andando indietro nel tempo questo è chiamato un ordine MA infinito o MA un ordine finito MA è un AR ordine infinito ed ogni AR ordine finito è un ordine infinito MA. Recall in settimana 1, abbiamo notato che un requisito per un AR fisso 1 è che 1 1 Sia s calcolare il xt Var utilizzando i representation. This causali ultimo passo utilizza un fatto di base sulla serie geometrica che richiede phi1 1 altrimenti la serie diverges. Purpose Controllare Randomness. Autocorrelation trame Box e Jenkins, pp 28-32 sono invece comuni a strumento utilizzato per controllare la casualità in un set di dati Questa casualità è accertato calcolando autocorrelazioni per i valori dei dati in tempo variabile in ritardo Se casuali, tali autocorrelazioni dovrebbe essere vicino allo zero per ogni e tutte le separazioni time-lag If non casuale, quindi uno o più dei le autocorrelazioni saranno significativamente non-zero. In Inoltre, trame di autocorrelazione sono utilizzati nella fase di identificazione del modello di Box-Jenkins autoregressiva, media mobile models. Autocorrelation serie temporale è solo una misura di Randomness. Note che non correlati non significa necessariamente dati casuali che ha una significativa autocorrelazione non è casuale Tuttavia, i dati che non mostrano significative di autocorrelazione può ancora esibire non casualità in altri modi di autocorrelazione è solo una misura di casualità nel contesto di validazione del modello che è il principale tipo di casualità che dicuss nel Manuale , controllando autocorrelazione è tipicamente una prova sufficiente di casualità poiché i residui di povera modelli raccordo tendono a mostrare non sottili casualità Tuttavia, alcune applicazioni richiedono una più rigorosa determinazione di casualità In questi casi, una batteria di test, che può includere il controllo per autocorrelazione, vengono applicate poiché i dati possono essere non casuale in molte esempio ways. An diversi e spesso sottile di cui un controllo più rigoroso per la casualità è necessario sarebbe in fase di test di numeri casuali generators. Sample trama autocorrelazioni dovrebbe essere vicino allo zero per casualità tale non è il caso di questo esempio e quindi la casualità ipotesi fails. This trama campione autocorrelazione mostra che la serie temporale non è casuale, ma piuttosto ha un alto grado di autocorrelazione tra observations. Definition adiacente e quasi adiacente rh contro h. Autocorrelation trame si formano by. Vertical asse autocorrelazione coefficient. where C h è la autocovarianza function. and C 0 è la varianza function. Note che R h è compreso tra -1 e 1.Note che alcune fonti possono utilizzare la seguente formula per la funzione autocovarianza. Anche se questa definizione ha meno pregiudizi, la formulazione 1 N ha alcune proprietà statistiche desiderabili ed è la forma più comunemente usata nella letteratura statistica Vedere pagine 20 e 49-50 in Chatfield per details. Horizontal asse ritardo HH 1, 2, 3.La linea di cui sopra contiene anche diverse linee di riferimento orizzontali la linea mediana è a zero le altre quattro linee sono 95 e 99 bande di confidenza notare che ci sono due formule distinte per generare la fiducia bands. If la trama di autocorrelazione viene utilizzato per testare la casualità larghezza ovvero non vi è dipendenza dal tempo nei dati, la seguente formula è recommended. where N è la dimensione del campione, z è la funzione di distribuzione cumulativa della distribuzione normale standard e alfa è il livello di significatività in questo caso, le bande di confidenza sono fissati che dipende dalle dimensioni del campione questa è la formula che è stato utilizzato per generare le bande di confidenza nelle trame plot. Autocorrelation di cui sopra sono utilizzati anche nella fase di identificazione del modello per il montaggio di modelli ARIMA in questo caso, un modello di media mobile si presume per i dati e le seguenti bande di confidenza dovrebbero essere generated. where k è il ritardo, N è la dimensione del campione, z è la funzione di distribuzione cumulativa della distribuzione normale standard e alfa è il livello di significatività In questo caso, le bande di confidenza aumentano all'aumentare lag. La trama di autocorrelazione in grado di fornire le risposte alle seguenti questions. Are i dati random. Is un'osservazione relativa a un observation. Is adiacenti un'osservazione relativa a una osservazione due volte rimosso etc. Is l'osservato noise. Is bianco serie tempo il tempo osservato serie sinusoidal. Is la osservata serie storica autoregressive. What è un modello adeguato per il tempo osservato series. Is il model. valid e sufficient. Is la ss formula sqrt valid. Importance garantire la validità di conclusions. Randomness ingegneria insieme a modello fisso, fisso variazione, e la distribuzione fisso è una delle quattro ipotesi che in genere sono alla base tutte le misurazioni elabora l'assunzione casualità è di fondamentale importanza per i successivi tre reasons. Most test statistici standard dipendono dalla casualità la validità delle conclusioni del test è direttamente legata alla validità del casualità assumption. Many formule statistiche comunemente utilizzate dipendono dalla assunzione casualità, la formula più comune è la formula per determinare la deviazione standard del campione mean. where s è la deviazione standard dei dati Sebbene molto utilizzato, i risultati dall'utilizzo di questo formula sono di alcun valore a meno che il presupposto holds. For dati univariati, il modello predefinito is. If i dati non sono casuali casualità, questo modello non è corretto e valido, e le stime per i parametri come la costante diventano senza senso e invalid. In insomma, se l'analista non controlla per casualità, allora la validità di molte delle conclusioni statistiche diventa sospetto la trama di autocorrelazione è un modo eccellente di controllo per tale casualità.

No comments:

Post a Comment